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Abstract

A weakly nonlinear stability analysis is developed for the unicellular natural convection pattern in a horizontal fluid

layer heated by uniform crossed heat fluxes applied on the horizontal and vertical walls, the remaining walls being adi-

abatic. The critical Rayleigh number is determined, for different Prandtl numbers and heat flux ratios, from the ana-

lytical parallel approximation for the single cell flow. For the range of parameters considered, stable, supercritical

bifurcations occur solely for longitudinal disturbances with three velocity components. Depending on the value of

Pr and the heat flux ratio, the instability is oscillating and hydrodynamic at small Pr and thermal and steady for larger

Pr. Computations of the Landau coefficients for the two interacting modes reveal that the hydrodynamic mode is the

only stable mode at the codimension points.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is now well established in the literature on natural

convection that the unicellular base flow encountered in

a rectangular enclosure at low Rayleigh numbers under-

goes a series of bifurcations as the Rayleigh number in-

creases, in porous as well as in fluid medium. For

isothermal boundary conditions imposed on the top

and bottom walls, in a porous medium, Riley and Win-

ters [1] reported that the unicellular pattern is the pre-

ferred form of primary flow in two dimensions for

small enclosure aspect ratios. If the problem is extended
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to three dimensions, it is found that the boundary con-

ditions imposed on the side walls do play a very impor-

tant role in setting the value of the critical Rayleigh

number and the type of modal configuration, as re-

ported by Murphy [2] and Wang et al. [3], among others.

When heating the enclosure by applying a constant

heat flux on the horizontal walls is considered, unicellu-

lar flow patterns may also be obtained at low Rayleigh

numbers, as reported by Bejan [4], for a thin vertical

porous cavity insulated on the neighboring sides. Later,

Vasseur et al. [5] and Sen et al. [6] analysed the stability

of the unicellular pattern for an inclined shallow porous

cavity subjected to a constant flux on the facing walls.

The aforementioned uniform flux condition can be

encountered when considering a finite conductivity slab

adjacent to a porous layer as discussed by Kimura and

Pop [7] or in the study of electrochemical systems, as re-

ported by Bark et al. [8].
ed.
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Nomenclature

a aspect ratio

A amplitude

A matrix operator

B constant matrix

D derivative

d distance between the walls

E complex exponential

g gravity

H differential operator

k horizontal wavenumber

L differential operator

L matrix operator

l transverse wavenumber

N number of grid points

p pressure

Pr Prandtl number

Q transverse heat flux

q heat flux ratio

Ra Rayleigh number

t time

T temperature

u velocity vector

u, v, w velocity components

x, y, z coordinates

x, z unit vectors

Greek symbols

a horizontal temperature gradient

b direction of propagation

h base flow temperature profile

r complex amplification rate

w base flow stream function

Superscripts

� adjoint quantity, 3-D

^ disturbance quantity, 1-D

* complex conjugate

Subscripts

c critical value

H hydrodynamic

i imaginary part

r real part

T thermal

0 reference value

Other symbols

D/Dt material derivative

jj modulus

$ gradient

$2 Laplacian
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Kimura et al. [9] considered the stability problem in

three dimensions in a shallow horizontal porous layer

insulated on the vertical boundaries and heated by a

constant heat flux applied from below. Their conclusions

were that the steady parallel base flow is linearly stable

to longitudinal and transverse disturbances at first for

small Rayleigh numbers and that a Hopf bifurcation oc-

curs first for longitudinal disturbances, at some critical

Rayleigh number for a given aspect ratio, leading to

oscillating instabilities. In a slightly different context,

Nield [10] also showed that similar instability regimes

could be obtained in a shallow porous layer submitted

to an oblique temperature gradient, by varying the ver-

tical to lateral temperature gradient ratio.

For a fluid medium, Bergholz [11] determined that

the instability in a vertical cavity with a fixed tempera-

ture difference on the sides is either of hydrodynamic

or thermal origin depending on the Prandtl Number,

and that transition from stationary to oscillatory insta-

bility modes happens with increasing thermal stratifica-

tion at small Prandtl numbers, and the other way

around at large Prandtl numbers.

Although unicellular convection sustained by a uni-

form heat flux applied on some parts of the boundary

can be encountered in many types of enclosure configu-
rations, nearly adiabatic conditions on the rest of the

boundary do not always occur in practice. Since the

instability regime of the flow for isothermal heating is

so sensitive to the sidewall thermal conditions, it is

worthwhile to extend the previous studies by undertak-

ing a weakly non linear stability analysis of unicellular

convection for a horizontal fluid layer heated by crossed

uniform heat fluxes of different magnitudes. The critical

Rayleigh number will be determined for a range of Pra-

ndtl numbers and heat flux ratios q by solving the linear

equations. The Landau coefficients will be computed for

the different instability modes and bimodal stability con-

sidered at the codimension points.
2. Problem definition

Let us consider a shallow horizontal cavity extending

widely along the x and z directions as in Fig. 1. The sta-

bility of natural convection flow inside the enclosure is

examined for adiabatic conditions in the z-direction

and uniform heat fluxes on the remaining walls, as

sketched. It is assumed from the beginning that the tem-

perature differences involved in the problem are small

enough to allow us to make the standard Boussinesq



Fig. 2. Simulation with a 125 by 25 mesh of flow in a finite

cavity, Ra = 104, Pr = 0.7 and a = 5.

Fig. 1. Geometry and coordinate system.
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approximations [12]. When convection occurs within a

newtonian fluid of constant kinematic viscosity m, ther-
mal diffusivity aT and coefficient of thermal expansion
bT, it is convenient to scale length, temperature, velocity
and time with reference to

d;DT ¼ Qd
kT

;
aT
d
;
d2

aT
ð1Þ

where all properties are evaluated at some reference tem-

perature T0. Based on the Boussinesq approximation

q = q0[1 � bT(T � T0)] in the expression for the buoy-

ancy force, the set of governing equations for the dimen-

sionless problem become

r � u ¼ 0 ð2Þ

D

Dt
u ¼ �rp þ Prr2uþ RaPrTy ð3Þ

DT
Dt

¼ r2T ð4Þ

in terms of the Prandtl number Pr = m/aT and the Ray-
leigh number Ra = gbTDTd3/maT. The boundary condi-
tion for u is the no-slip requirement. For T, the

Neuman conditions oT/on = �q at y = ±1/2, and 0 or 1

at the vertical boundaries apply.
3. Base flow

Under the parallel flow assumption, namely, that

u = u(y) only, it is straightforward to introduce a stream

function w(y) so that the continuity equation (2) is auto-
matically satisfied. The 2-D numerical solutions of Eqs.

(2)–(4) shown in Fig. 2 reveal that such fully developed

conditions are possible in the central area of the cavity,

with streamlines nearly parallel with the x axis, provided

that the value of the aspect ratio a is sufficiently large as

we will discuss in the Results.
Nevertheless, as long as the approximation is valid, it

is not difficult [13] to show from Eqs. (3) and (4) that

T = ax + h(y), up to an additive constant, so that the
momentum and temperature equations finally reduce to

w
0000 � aRa ¼ 0

h00 � aw0 ¼ 0
ð5Þ

with boundary conditions w = w 0 = 0 and h 0 = �q at

y = ±1/2, where the prime denotes differentiation with

respect to y.

Solving Eq. (5) above in the coordinate system of

Fig. 1 yields a solution of the form

wðyÞ ¼ aRa
4!

y2 � 1
4

� �2

T ¼ ax� qy þ a2Ra
4!

y5

5
� y3

6
þ y
16

� � ð6Þ

for the base flow. For the crossed flux heating conditions

considered here, the dimensionless temperature gradient

a cannot be specified a priori. For given values of Ra

and q, this parameter is determined instead from the

integration of the temperature equation (4) in conserva-

tive form over an arbitrary section of the cavity. With

the help of the divergence theorem, it follows next from

the thermal energy balance and the boundary condition

oT/ox = 1 on the side walls thatZ 1=2

�1=2
w0T þ oT

ox

� �
dy ¼ �1 ð7Þ
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The left-hand side of Eq. (7) may then be evaluated

using Eq. (6) to obtain for the temperature gradient a
the cubic equation

a3Ra2

9!
þ a 1� qRa

6!

� �
� 1 ¼ 0 ð8Þ

with one positive and two negative roots. Only the posi-

tive root, associated with the natural circulation pattern,
ik D il 0 0

PrL� ikw0 � r �w00 0 �ik 0

0 PrL� ikw0 � r 0 �D RaPr

0 0 PrL� ikw0 � r �il 0

�a �h0 0 0 L� ikw0 � r

3
7777775

û1
v̂1
ŵ1
p̂1
T̂ 1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

0

0

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð11Þ
will be considered for the purpose of deriving the stabil-

ity equations.
4. Stability analysis

Let us introduce in the base flow small amplitude per-

turbations of the temperature, pressure, and velocity

field components, propagating at some angle b with re-
spect to the (x–y) plane of Fig. 1. The next step is to as-

sume an expansion of the form f = f0 + ef1 + e2f2 + � � �, in
which e is a formal parameter, for all variables in the set
of governing equations (2)–(4). Multiple time scales

t0 = t, t1 = et, t2 = e2t,. . . are also defined so that the
nth-order equation system is

r � un ¼ 0Xn

m¼0

oun�m

otm
þ ðum � rÞun�m ¼ �rpn þ Prr2un þ RaPrT ny

Xn

m¼0

oT n�m

otm
þ ðum � rÞT n�m ¼ r2T n

ð9Þ

with the original boundary conditions for n = 0 and their

homogeneous counterparts when n P 1.

The solution at the order zero is simply the base flow

solution, Eq. (6). The first-order solution is that of linear

stability analysis. Let the vector Û1 ¼ ðû1; v̂1; ŵ1; p̂1; T̂ 1Þ
T

represent all first-order variables. We shall assume a sep-

arable first-order solution of the form U1 ¼ AðtÞÛ1ðyÞ
expði~k � rÞ plus its complex conjugate (C.C.). Here
~k ¼ kxþ lz is the wavenumber vector, with a transverse
component k and a longitudinal component l. These

wavenumbers are assumed real, as it is customary for

temporal stability analysis. Substituting the solution
form of U1 into Eq. (9) for n = 1, it is found that the

variables are separable only if

AðtÞ ¼ eAðt1; t2 . . .Þert0 ð10Þ

where A, eA and r = rr + iri are complex quantities. The
corresponding one-dimensional system in y with homo-

geneous boundary conditions û ¼ v̂ ¼ v̂0 ¼ ŵ ¼ T̂
0 ¼ 0

at y = ±1/2 is then
with D = d/dy, while L stands for the operator

D2 � k2 � l2. For a given set of parameter values Ra,

Pr, q, k and l, Eq. (11) defines an eigenvalue problem

in r. It is possible to write Eq. (11) in compact form
as Lð~k; rÞÛ1 ¼ 0. One can equivalently split the opera-

tor L in two parts, namely as Lð~k; rÞ ¼ Að~kÞ � rB,
where the elements of matrix B are equal to either 0 or

1. To the eigenvalue problem above corresponds an ad-

joint problem LyU
y
1 ¼ 0. The boundary conditions at

y = ±1/2 for the adjoint problem are v� = w� = Dw� =

p� = DT� = 0. The adjoint operator L� = (L*)T with

D ! �D is required by definition to satisfy the funda-

mental relationship

hLfjgi ¼ hfjLygi ð12Þ

for any pair of vectors f and g. The inner product in Eq.

(12) above is defined as

hfjgi¼D
X5
i¼1

Z 1=2

�1=2
f �
i ðyÞgiðyÞdy ð13Þ

Unfortunately, unless a = 0, Squire�s theorem (see,

for instance, Drazin and Reid [14]) cannot be used here

to formally reduce the three-dimensional stability prob-

lem to an equivalent two-dimensional one. We must deal

therefore with the full three-dimensional stability prob-

lem. But the eigenvalue problem Eq. (11) involves the

singular matrix B. The problem therefore is not in stan-

dard form as stated and must be rearranged prior to

numerical solution. Fortunately, this can be done easily.

We can choose for instance to eliminate p̂ and ŵ from
Eq. (11), using the continuity and transverse momentum

equations. We obtain as a result the reduced system of

equations
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�~k
2ðPrL� ikw0Þ ikðPrL� ikw0ÞDþ l2w00 0

0 PrL2� ikðw0L�w000Þ �~k
2
RaPr

�a �h0 L� ikw0

2
664

3
775

û1

v̂1

T̂ 1

8><
>:

9>=
>;

¼r

�~k
2
ikD 0

0 L 0

0 0 1

2
664

3
775

û1

v̂1

T̂ 1

8><
>:

9>=
>; ð14Þ

defining the eigenvalue problem in standard form this

time, where ~k
2 ¼ k2 þ l2 is simply the modulus of the

wavenumber vector. The same procedure can be applied

to the adjoint problem. Elimination of u� and p� from

the original equation system leads to the equivalent

problem

�ðPrLþ ikw0ÞD�2ikw00 ikðPrLþ ikw0Þ aD� ikh0

~k
2ðPrLþ ikw0Þ �ikðPrLþ ikw0ÞD �al2

0 RaPr Lþ ikw0

2
664

3
775

vy

wy

T y

8><
>:

9>=
>;

¼r

�D ik 0

~k
2 �ikD 0

0 0 1

2
64

3
75

vy

wy

T y

8><
>:

9>=
>; ð15Þ

for the remaining adjoint variables.

4.1. Second order solution

Harmonic components of the basic perturbation are

generated by the nonlinear terms of Eq. (9). A separable

solution for n = 2 is assumed once again for all variables.

Introducing the short-hand notation E for exp(ikx + ilz),

the appropriate form of normal mode expansion of the

second-order solution is now

Û2 ¼ A20ðtÞÛ20ðyÞ þ A21ðtÞÛ21ðyÞE þ C:C:
þ A22ðtÞÛ22ðyÞE2 þ C:C:þ � � � ð16Þ

It is found from Eq. (9) and (16), based on the

orthogonality property of the powers of E, that the solu-

tion at the order E0 is separable only if A20 = jAj2. The
corresponding one-dimensional system in terms of y is

Lð0; 2rrÞÛ20 ¼ H�~k;1BÛ
�
1 þ C:C: ð17Þ

The operator H�~k;1¼
D �ikû1 þ v̂1D� ilŵ1 on the

right-hand side of Eq. (17) acts on each component of

the vector BÛ
�
1. This equation has a purely real solution,

in which û20 vanishes, provided that rð0Þ 6¼ 2rrð~kÞ. We
assume that this is the case.

Repeating the procedure at the order E1, one finds

that Û21 is proportional to Û1. Since both solutions

can be lumped together, it can be assumed without loss

of generality that Û21 is equal to zero. At the order E2

this time, separation of variables requires that

A22 = A2. The corresponding system in y is then

Lð2~k; 2rÞÛ22 ¼ H ~k;1BÛ1 ð18Þ
We take for granted here also that the condition

rð2~kÞ 6¼ 2rð~kÞ for the existence of a solution is satisfied.
At higher orders En, n P 3, homogeneous systems for

Û2n are found which only have the trivial solution. The

complete second-order solution is then

U2 ¼ jAj2Û20ðyÞ þ A2Û22ðyÞE2 þ A�2Û
�
22ðyÞE�2 ð19Þ
4.2. Third order solution

This solution is interesting mainly at the order E,

since it allows the determination of the Landau coeffi-

cient. One more expansion of the third-order solution

in powers of E

U3 ¼ A30ðtÞÛ30ðyÞ þ A31ðtÞÛ31ðyÞE þ C:C:
þ A32ðtÞÛ32ðyÞE2 þ C:C:þ � � � ð20Þ

together with Eq. (9) yields a system of one dimensional

equations in y for each component of Û3n. Non homoge-

neous systems are found only for Û31 and Û33 however,

leading to a solution in terms of E, E3 and their complex

conjugates exclusively. At the order E, separation of

variables requires that A31 ¼ AjAj2 and also that
oA
ot2

¼ KAjAj2 ð21Þ

In Eq. (21), K is the complex Landau coefficient, to

be determined as part of the solution of the one-dimen-

sional system for Û31ðyÞ

Lð~k; r þ 2rrÞÛ31
¼ KBÛ1 þ v̂1DBÛ20 þ H �

�2~k;1BÛ22 þ H ~k;20BÛ1

þ H�~k;22BÛ
�
1 ð22Þ

Closer examination reveals that Eq. (22) is solvable

as long as K is such that the solvability condition below

is satisfied. Forming the inner product of Eq. (22) above

with U
y
1 and using linearity gives

Lð~k; rÞÛ31jUy
1

D E
¼ 2rr BÛ31jUy

1

D E
þ K� BÛ1jÛ1

D E
þ g31jU

y
1

� �
ð23Þ

where g31 represents all the remaining terms on the right-

hand side of Eq. (22). Since the left-hand side of Eq. (23)

vanishes as a consequence of Eq. (12) and the definition

of the adjoint solution, the solvability condition is

therefore

Lim
rr!0

K� ¼ � hg31jU
y
1i

hBÛ1jUy
1i

ð24Þ

setting at the same time the value of the Landau coeffi-

cient. Considering the multiple time scales defined ear-

lier, the rate of change of A is given up to the second

order in e by
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dA
dt

¼ oA
ot0

þ e2
oA
ot2

þ � � � ¼ rAþ e2KAjAj2 þ � � � ð25Þ

Since e is arbitrary, one can always redefine the prod-
uct eA ! A in order to get the final form

dA
dt

¼ rAþ KAjAj2 þ � � � ð26Þ

Taking the real and imaginary parts of Eq. (26), it is

easily found that the equilibrium solution for the modu-

lus of A is jAje = (� rr/Kr)
1/2, provided that rr and Kr are

of different signs. When the equilibrium solution exists,

the bifurcation is classified as supercritical for rr > 0
and subcritical for rr < 0.
4.3. Bimodal stability

Transition between different types of instabilities oc-

curs when the two instability modes share the same crit-

ical Rayleigh number at some q for a given Pr. This

situation corresponds to a point of intersection of two

marginal stability curves in a (Pr,Ra) or (q,Ra) plane,

known as a codimension point [15]. Near a codimension

point, located at a specific value of the Prandtl number

Prcod(q) for a given q, the simultaneous presence of

two critical disturbance modes of different wavenumbers

and amplitudes is possible. For instance, the interaction

of stationary and oscillating modes, or oscillating ther-

mal and hydrodynamic modes might occur. The previ-

ous unimodal analysis must then be generalized. The

first-order bimodal solution is obtained by superposition

of the solutions of Eq. (14) for each individual mode.

The normal mode expansion in powers of EH and ET
of the second-order solution is then

U2 ¼ jAHj2Û20HðyÞ þ jATj2Û20TðyÞ þ A2HÛ22HðyÞE2H
þ A2TÛ22TðyÞE2T þ AHATÛ21HðyÞEHET
þ AHA

�
TÛ21TðyÞEHE�1

T þ C:C: ð27Þ

The subscripts H and T are used to indicate the terms

associated with each mode, the hydrodynamic or the

thermal for instance. The first four terms on the right-

hand side of Eq. (27) correspond to the second-order

solutions for the uncoupled modes. The remaining terms

are the result of mode coupling. They are found by

solving their corresponding one-dimensional equations

in y

Lð~kH þ ~kT; rH þ rTÞÛ21H ¼ H ~kT ;1H
BÛ1T

Lð~kH � ~kT; rH þ r�
TÞÛ21T ¼ H�~kT ;1H

BÛ
�
1T

ð28Þ

Repeating the expansion procedure for the third-or-

der solution, it turns out that separation of variables is

possible as before if, first, the solution at the order EH,

ET is of the form
U31 ¼ ½AHjAHj2Û
H

31HðyÞ þ AHjATj2Û
T

31HðyÞ�EH
þ ½ATjAHj2Û

H

31TðyÞ þ ATjATj2Û
T

31TðyÞ�ET þ C:C:
ð29Þ

and, second, the amplitudes are interrelated as follows

oAH
ot2

¼ KHHAHjAHj2 þ KHTAHjATj2

oAT
ot2

¼ KTHATjAHj2 þ KTTATjATj2
ð30Þ

Thus, the rate of change of the amplitudes involves

four Landau coefficients. The coefficients KHH and

KTT are the coefficients for the uncoupled modes. They

are found from the first-order and adjoint solutions of

each respective mode, using Eq. (24). The other coeffi-

cients can be determined from the solvability condition

of

Lð~kH; rH þ 2rrTÞÛ
T

31H ¼ KHTÛ1H þ gT31H

Lð~kT; rT þ 2rrHÞÛ
H

31T ¼ KTHÛ1T þ gH31T

ð31Þ

The adjoint solutions U
y
H; U

y
T are required to form

the inner product with the first and second equation in

Eq. (31), respectively. The expressions for the terms

gT31H; g
H
31T above are rather lengthy, however. For this

reason, they are left in Appendix. Once the Landau coef-

ficients are known, the bimodal equilibrium solution of

Eq. (30) for the magnitude of AH, and AT is

jAHj2e ¼
rrTKrHT � rrHKrTT

KrHHKrTT � KrHTKrTH

jATj2e ¼
rrHKrTH � rrTKrHH

KrHHKrTT � KrHTKrTH

ð32Þ

Suslov and Paolucci [16] analysed the solution Eq.

(32) and concluded that it is stable only if KrHTKrTH < 0

and CHH + CTT < 0, where

CHH ¼ rrH þ 3jAHj2eKrHH þ jATj2eKrHT
CTT ¼ rrT þ jAHj2eKrTH þ 3jATj2eKrTT

ð33Þ

The reduced eigenvalue problem Eq. (14) is readily

solvable by classical numerical methods. One of the

most straightforward is to solve the equations by fi-

nite-differences. Five-point central shemes are used thor-

oughout, allowing fourth-order accuracy for the first

and second derivatives and second-order accuracy for

the higher derivatives. The homogeneous Neuman

boundary conditions of Eq. (14) are also discretized

using forward and backward fourth-order difference for-

mulas. The adjoint problem Eq. (15) is treated similarly.

The eigenvalues of the discrete system matrices are

computed using the DGVLCG subroutine from the

IMSL library. For N computational points, the value

of Ra for which the maximal growth rate rr among
the 3N eigenvalues cancels is determined iteratively by

Newton�s method, holding q, k, l, Pr constant. A
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marginal stability surface for given values of q ranging

from 0.5 to 8 and Pr ranging from 0.25 to 100 is gener-

ated by repeating the procedure for different wavenum-

bers. The minimum value of Ra over the stability

surface determines the critical Rayleigh number

Rac(q,Pr).

The five-point scheme is also used to perform the dis-

cretization of Eqs. (17), (18) and (28). Let us mention by

the way that Eq. (18) is an ill-conditioned system. A

solution for the non vanishing components of Û20 is then

better found by least squares using the DLSBRR rou-

tine. All the other equations are solved directly with

the DLSACG routine.

The unimodal stability results presented in the next

section were computed using N = 90 grid points. The fi-

nite difference code was validated by the duplication of

Bergholz�s results. A very good overall agreement be-

tween both sets of predictions was found [13], over the

range of Pr values and stratification levels considered,

if we used N = 80 or 100. Finer meshes are required

for bimodal stability however. The amplitude plot in

Fig. 12 needed N = 150 to ensure reasonable grid

independence.
5. Results

To begin with, the full set of governing equations

Eqs. (2)–(4), is solved numerically with a different code

in a finite width cavity in two dimensions in order to test

the validity of the parallel flow approximation. Calcula-

tions are performed for different values of q at Ra = 104

and Pr = 0.7, based on fully implicit time discretization,

with spatial discretization by control volumes using the

power-law scheme of Patankar [17].

The maximum value of the numerical solution for W
is plotted versus the cavity aspect ratio a in Fig. 3 for

Ra = 104 and Pr = 0.7. Comparison with the parallel

flow solution value obtained from Eq. (6), which is
Fig. 3. Streamfunction maximum versus a for Pr = 0.7,

q = 1, 5.
strictly valid only for a cavity extending to infinity along

x, reveals very good agreement between the solutions for

a P 4 or so when q = 1. Aspect ratios of the order of 7

are required for q = 5. For larger heat flux ratios q, it

seems reasonable then to expect that larger aspect ratios

are required before it is safe to make the parallel flow

approximation. Thus, the validity of the parallel approx-

imation for the base flow over the central region of the

cavity is confirmed for small values of q. Further exper-

imentations reveal that parallel flow is estabished very

early in the cavity, in fact as soon as Ra ¼ Oð103Þ. Thus,
a and q are the main parameters to select in order to ob-

tain parallel flow in the enclosure.

Preliminary investigations of the solutions of the

eigenvalue problem Eq. (14) reveal that two-dimensional

transverse disturbances (propagating along the x-direc-

tion) are not critical at any Prandtl number considered

in this study. The critical disturbances are propagating

at a large angle b in the (x–z) plane and always involve
the three velocity components. The angle b defines

the direction of propagation in such a way that

k ¼ ~k cos b and l ¼ ~k sin b. It is used simply because

the discussion of the stability results is easier to follow

in terms of ~k and b rather than in k and l.

It is well established in stability theory that the phys-

ical origin of the disturbances is different depending on

the value of Pr. Either hydrodynamic modes, owing to

a destabilization of the base flow velocity, or thermal

modes, generated by destabilization of the temperature

will occur first. If Pr < 1, the fluid thermal diffusivity is

greater than its viscous diffusivity. Thermal disturbances

of the base flow are then prone to be dissipated faster

than hydrodynamic disturbances, and instabilities most

likely to be caused by hydrodynamic disturbances, gain-

ing energy from the base flow by the action of shear. On

the other hand, as Pr increases, thermal, buoyancy-dri-

ven disturbances are expected to be at the origin of the

main mode of instabilities.

Solution of the eigenvalue problem Eq. (14) also re-

veal that ri is not equal to zero at the critical Rayleigh
when the Prandtl number is small, indicating an oscillat-

ing instability of the base flow solution, while there are

no oscillations for larger Pr. Steady and oscillating

instabilities were similarly reported by Bergholz [11] in

the case of a vertical cavity with a fixed temperature dif-

ference imposed between the walls. But the finding is in

contrast with the case of a porous layer heated from a

single flux [9], where instabilities are always oscillating.

Fig. 4 displays the marginal stability curves for the

critical longitudinal disturbances propagating along

bc = p/2 for q = 1 and different values of Pr. Each curve

has two branches, associated with the hydrodynamic

oscillating mode and the thermal steady mode, respec-

tively, as discussed below. It appears that the stability

curve for Pr = 1 has only one minimum at large wave-

number ~k. The curve for Pr = 0.7 on the other hand



Fig. 4. Marginal stability at b = p/2 for q = 1, Pr = 0.7, 1.
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displays not one, but two minima at a small and a large

wavenumber. Each minimum indicates the Rayleigh

number for the onset of the thermal and the hydrody-

namic mode, with the hydrodynamic mode as the critical

one in the present case. We were able to detect in a cav-

ity of aspect ratio a = 6.2 small amplitude oscillations

with a frequency x � 100 of the maximum w value of

the numerical solution of Eqs. (2)–(4) for Ra =

1.175 · 105, q = 1, Pr = 0.7 with the computer code used

to simulate the base flow. This value, obtained from a

125 by 25 mesh and a time step Dt = 5 · 10�4, is reason-
ably close to the theoretical value x = 90.98.
Fig. 5 shows the critical Rayleigh number Rac versus

the Prandtl number for different values of q. The critical

direction bc = p/2 is the same for the entire range of Pr

and q considered. That is, the critical disturbances are

always propagating along z. Computation of the Lan-

dau coefficient reveals that the bifurcation is supercriti-

cal in all cases, with a stable equilibrium solution for

the amplitude A of the disturbance when Ra/Rac > 1.

It is clear from the plots that the value of Rac for the

hydrodynamic mode is strongly dependent upon the
Fig. 5. Critical Rayleigh number versus Pr, q = 1, 2, 5.
value of Pr. For the thermal mode however, the influ-

ence of Pr is far less pronounced and rapidly becomes

negligible as Pr increases beyond 4 or 5. It is seen also

that the base flow is much more stable for Prandtl num-

bers slightly above, say, one than for smaller Pr values.

Some caution is necessary with the results, as the parallel

approximation might break down in a cavity of finite ex-

tent when Ra is too small. Numerical simulations with

q = 5, Pr = 0.3, is n a finite cavity with aspect ratio

a = 5 reveal that the flow is not truly parallel at

Ra = 500 for instance. Predictions of Rac of this order

of magnitude therefore, corresponding to the smallest

Pr values, should be regarded as asymptotic results hav-

ing only indicative value. The heat flux ratio also plays

an important role. The influence of the parameter q in

the determination of Rac is significant. When q < 1,

Rac increases steeply because instabilities only happen

at very large Rayleigh numbers for a cavity heated side-

ways, i.e. for q = 0. It is found from Fig. 5, not surpris-

ingly, that increasing the flux ratio q reduces the value of

Rac, as heating the fluid from below is destabilizing.

Fig. 6 describes the variation of the critical wavenum-

ber kc with Pr. There is a discontinuous transition from

the low wavenumbers of the hydrodynamic mode to the

high wavenumbers of the thermal mode, at the value of

Pr corresponding to the codimension point Prcod for

each value of q considered. The case of q = 1 is instruc-

tive. Besides the critical modes along bc = p/2, indicated
by solid lines on Fig. 6, with transition between hydro-

dynamic and thermal modes at Prcod = 0.764, there

exists for q 6 1 a second branch of oblique hydrody-

namic modes with bc < p/2. This second branch is shown
for q = 1 on the figure, where it extends over the range

0.651 < Pr < 0.856. Computation of the Landau coeffi-

cient reveals that the bifurcation is subcritical on this

branch. There is then no equilibrium solution for the

disturbance amplitude A when Ra/Rac > 1 and no stable
Fig. 6. Critical wavenumber vector modulus ~kc versus Pr, q = 1,

2, 5.



Fig. 7. Critical direction of propagation bc versus Pr, q = 0.5,

0.8, 1.
Fig. 9. Prandtl number value at codimension point versus q.
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solution other than zero when Ra/Rac < 1. One can fur-

ther notice that smaller values of kc for the thermal

mode are found for larger values of q, while it is just

the opposite for the hydrodynamic mode.

Fig. 7 shows the direction of propagation bc of the
critical disturbance versus Pr for q = 0.5, 0.8 and 1. It

is clear from the plot that the direction bc = p/2 is unaf-
fected by the value of Pr for the stable supercritical crit-

ical branch of the hydrodynamic mode and the thermal

mode. The transition from one mode to the other occurs

at a value of Prcod of 0.619 and 0.764 for q = 0.5 and 1,

respectively. For the subcritical branches of the hydrody-

namic mode however, the angle bc decreases smoothly
with Pr. For the sake of completeness, the oscillation fre-

quencyxc = ri is shown versus Pr in Fig. 8 for q = 1, 2, 5.

The frequency of the hydrodynamic instability cells ap-

pears to be increasing steadily with Pr in all cases. The

value of xc abruptly drops to zero for Pr > Prcod where

transition to the steady thermal mode occurs.

The codimension points naturally define a curve

Prcod(q) representing the borderline between the thermal
Fig. 8. Critical oscillation frequency xc versus Pr, q = 1, 2, 5.
and hydrodynamic modes as depicted in Fig. 9, summa-

rizing what type of instability will occur for given values

of the parameters q and Pr according to the linear stabil-

ity theory. The Rayleigh number at the codimension

point is found to decrease steadily with q, as expected,

from a value of Rac = 7.579 · 104 when q = 1 to a value

of Rac = 1.149 · 104 when q = 5. The computations also

reveal that hydrodynamic instabilities can occur for Pr

values slightly greater than 1.0 if q is larger than 5.0 or so.

The kinetic and thermal potential energy balances of

the disturbances can give us some insight in connection

with the physical mechanisms driving the instability

modes. Multiplying Eq. (11) by the complex conjugate

of BÛ1, integrating over [�1/2,1/2] with respect to y

and taking the real part of the results gives, after a few

rearrangements

rrEkin ¼ �Pr _Evis þ _EU þ RaPr _EB

rrEpot ¼ � _Edif þ _ET þ a _ES
ð34Þ

for the rates of change of the disturbance kinetic energy

Ekin and thermal potential energy Epot. Each term
Fig. 10. Disturbance energy balance versus Pr, q = 1.



M. Prud’homme, H. Bougherara / International Journal of Heat and Mass Transfer 48 (2005) 2278–2289 2287
appearing in Eq. (34) is defined in appendix. Their

meaning is as follows. First, �Pr _Evis and � _Edif are al-
ways negative and account for the rate of kinetic energy

loss due to viscous dissipation and potential energy loss

due to heat diffusion, respectively. Among the remaining

terms, _EU is the rate of kinetic energy transfer from the
base flow, RaPr _EB is the rate of change of kinetic energy
caused by buoyancy, while a _ES represents the rate of
change of potential energy related to stratification. Fi-

nally, _ET is the rate of change of potential energy asso-
ciated with the interactions of the disturbance with the

vertical temperature gradient.

The relative values of the energy balance terms in Eq.

(34) are displayed versus Pr in Fig. 10 at the critical Ray-
Fig. 11. (a) Disturbance kinetic energy per unit volume versus y, Pr =

Pr = 0.764, q = 1.
leigh number for q = 1. Normalization of the data, is

done with respect to �Pr _Evis ¼ �1 and � _Edif ¼ �1,
in such a way that the sum of the normalized
_EU and RaPr _EB values, as well as that of a _ES and _ET,
should be equal to one in principle on the graph. The

transition between modes at Prcod is associated with a

net discontinuity in all the profiles. The plots reveal that

for Pr < 0.764, the kinetic energy of the disturbance

comes nearly equally from the shear and buoyancy

terms. The instability is then hydrodynamic. For

Pr > 0.764, the contribution of the shear term becomes

rapidly negligible and the disturbance derives the bulk

of its kinetic energy from the buoyancy term. The insta-

bility is then thermal.
0.764, q = 1. (b) Modulus of disturbance temperature versus y,



Fig. 12. Equilibrium amplitude versus Ra, hydrodynamic

mode, Pr = 0.764, q = 1.
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The sharp contrast in the form of the solutions

Û1H and Û1T can be appreciated by considering the ki-

netic energy per unit volume of the disturbance

2ekin ¼ jû1j2 þ jv̂1j2 þ jŵ1j2 ð35Þ

at Prcod. Fig. 11(a) shows the profile of ekin versus y of

the thermal and hydrodynamic solutions for q = 1 at

the codimension point Prcod = 0.764. The hydrodynamic

mode has its peak of local kinetic energy at the mid-

plane y = 0 of the domain. The thermal mode on the

other hand shows four energy peaks located symmetri-

cally between the mid-plane and y = ±0.5. The modulus

of the temperature component of the solution for each

mode is plotted versus y in Fig. 11(b). The contrast be-

tween the two solutions is once again obvious. The

amplitude gradients are very mild for the hydrodynamic

mode, except perhaps near the center, and much more

important for the thermal mode elsewhere.

Computation of the four Landau coefficients of Eq.

(30) at the codimension point Prcod for q = 1, 2, 5 and

Eq. (33) finally reveals that there can be no stable bimo-

dal equilibrium solution Eq. (32) for the thermal and the

hydrodynamic mode. Only one mode can be present at

the codimension point therefore. Since the thermal mode

turns out to be subcritical, it will be the hydrodynamic

mode. Fig. 12 displays the equilibrium amplitude solu-

tion jAHje of Eq. (26) for the hydrodynamic mode at
Prcod versus the ratio Ra/Rac for q = 1, 2, 5. The fact

that no equilibrium solution exists for Ra < Rac, i.e.

while rr is still negative, is a clear indication that the
hydrodynamic mode corresponds to a supercritical

bifurcation.
6. Conclusion

The multiple timescale, normal mode expansion

shows that stable, supercritical bifurcations of the paral-
lel base flow always occur for longitudinal disturbances

involving three velocity components, for the range of

parameters Pr and q considered in this study. Depending

on the value of these parameters, the instability is either

oscillating and shear-driven, for small Pr, or steady and

buoyancy-driven for larger Pr. Thus, instabilities are not

always oscillating, in contrast with what is found in the

case of a porous layer heated from a single flux. There

exists an unstable, subcritical branch of the hydrody-

namic mode, for oblique disturbances when q 6 1. Com-

putations of the Landau coefficients for the two

interacting modes reveal that the hydrodynamic mode

is the only stable mode at the codimension points.
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Appendix A

The additional terms on the right-hand side of Eq.

(31) respectively stand for

gT31H ¼ v̂1HDBÛ20T þ H ~kH�~kT ;1T
BÛ21T þ H �

�~kH�~kT ;1T
BÛ21H

þ H ~kH ;20T
BÛ1H þ H ~kT ;21T

BÛ1T þ H�~kT ;21H
BÛ

�
1T

gH31T ¼ v̂1TDBÛ20H þ H�~kHþ~kT ;1H
BÛ21H

þ H �
�~kH�~kT ;1H

BÛ21H þ H ~kT ;20H
BÛ1T

þ H �
�~kH ;21T

BÛ1H þ H�~kH ;21H
BÛ

�
1H

The various quantities appearing in the disturbance

energy balances Eq. (34) are defined as follows

Ekin ¼
1

2

Z 1=2

�1=2
ekin dy

Epot ¼
1

2

Z 1=2

�1=2
jT̂ 1j2 dy

_Evis ¼
1

2

Z 1=2

�1=2
~k
2ðjû1j2 þ jv̂1j2 þ jŵ1j2Þ þ jû01j

2 þ jv̂01j
2

þ jŵ0
1j
2
dy

_Edif ¼
1

2

Z 1=2

�1=2
jT̂ 0
1j
2 þ ~k

2jT̂ 1j2 dy

_EU ¼ 1
2

Z 1=2

�1=2
w00Reðv̂1û�1Þdy

_EB ¼ 1
2

Z 1=2

�1=2
Reðv̂�1T̂ 1Þdy
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_ET ¼ � 1
2

Z 1=2

�1=2
h0Reðv̂1T̂

�
1Þdy

_ES ¼ � 1
2

Z 1=2

�1=2
Reðû1T̂

�
1Þdy
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